Digit frequencies of beta-expansions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Optimal Joint Digit Expansions

This paper deals with pairs of integers, written in base two expansions using digits 0,±1. Representations with minimal Hamming weight (number of non-zero pairs of digits) are of special importance because of applications in Cryptography. The interest here is to count the number of such optimal representations.

متن کامل

Growth Rate for Beta-expansions

Let β > 1 and let m > β be an integer. Each x ∈ Iβ := [0, m−1 β−1 ] can be represented in the form x = ∞ ∑ k=1 εkβ −k, where εk ∈ {0, 1, . . . , m − 1} for all k (a β-expansion of x). It is known that a.e. x ∈ Iβ has a continuum of distinct β-expansions. In this paper we prove that if β is a Pisot number, then for a.e. x this continuum has one and the same growth rate. We also link this rate to...

متن کامل

Beta-expansions with Negative Bases

This paper investigates representations of real numbers with an arbitrary negative base −β < −1, which we call the (−β)-expansions. They arise from the orbits of the (−β)-transformation which is a natural modification of the β-transformation. We show some fundamental properties of (−β)-expansions, each of which corresponds to a well-known fact of ordinary β-expansions. In particular, we charact...

متن کامل

On Redundant τ -adic Expansions and Non-Adjacent Digit Sets

This paper studies τ -adic expansions of scalars, which are important in the design of scalar multiplication algorithms on Koblitz Curves, and are less understood than their binary counterparts. At Crypto ’97 Solinas introduced the width-w τ -adic non-adjacent form for use with Koblitz curves. It is an expansion of integers z = P` i=0 ziτ , where τ is a quadratic integer depending on the curve,...

متن کامل

Daniel KRENN Digit Expansions with Applications in Cryptography

Efficient scalar multiplication in Abelian groups (which is an important operation in public key cryptography) can be performed using digit expansions. Apart from rational integer bases (double-and-add algorithm), imaginary quadratic integer bases are of interest for elliptic curve cryptography, because the Frobenius endomorphism fulfils a quadratic equation. One strategy for improving the effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2020

ISSN: 0236-5294,1588-2632

DOI: 10.1007/s10474-020-01032-7